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ABSTRACT

Three -nethods of defining optimality of statistical decision

rules are introduced. The first uses ideas of apprcoximation

theory by defining the optimal decision as that element of the

risk set which best approximates an ideal rule. The second

optimality principle defines optimality in terms of minimizing

functionals. The third method is the axiomatization of optimality

in statistical decision theory.



MATHEMATICAL MODELS FOR STATISTICAL DECISION THEORY

Bernard Harris

1. Introduction. In the typical problem of statistical inference, the

statistician is confronted with the problem of selecting one out of the vast

number of possible decision rules. I will refer to this as the "fundamental

problem of statistics". in this survey paper, I will try to give some mathe-

matical characterizations of the problem of selecting an optimal decision pro-

cedure. This will not constitute a resolution of the "fundamental problem",

inasmuch as this is intimately tied up with irresolvable philosophical dif-

ficulties. These arise, since in all but a few exceptional problems, there is

no single procedure which can be regarded as uniformly dominating all other

possible procedures. As a consequence, "reasonable people" have disagreed

and will continue to disagree on the specific procedure that should be selected.

Despite all of the above difficulties, a great deal can still be done to

formalize statistical decision theory. Thus, in what follows, I will give some

characterizations of optimality in statistical inference. The discussion will

of necessity be brief and is intended only to provide an introduction to these

characterizations. More extensive treatments are in preparation and will appear

subsequently.

The objective here will be to provide a mathematical structure in

which the details of the original problem are replaced by abstract mathematical

Supported by the United States Army under Contract No. : DA-31-1Z4-ARO -D..
462 and by the Technological University, Eindhoven, Netherlands.



statements which retain those features common to large classes of problems.

This enables us to isolate those aspects of decision theory which are relevant

to the selection of a single decision rule.

Vor the most part, this paper does not really contain new mathematical

results; instead it Is largely concerned with the adaptation of known mathe-

matical results to statistical problems.

Specifically, I will describe three ways of providing a mathematical

model for statistical decision theory. The first is motivated by comparatively

recent ideas of approximation theory. The second is obtained by representing

the statistical problem as an optimization problem. The third approach is a

discussion of some possible axiomatizations of statistical decision theory.

2. Preliminaries. Let e and a be topological spaces; 0 and a will be

used to denote generic elements of these spaces. Let L(e, a) be a mapping

from e xQ into the reals. We will assume throughout that L(O, a) is uni-

formly bounded from below; that is, there exists a real number M > 0, such

that L(e, a) > -M for all 9 e e, a 4. It is customary to refer to e as the

parameter space, C& as the space of actions, and L a- the loss function.

We also require a probability space (1, 8 r P), where C is a space of

elements x and S1 is a a--algebra of subsets of 1, and Pe e e is one

of a family of probability measures on 8 indexed by E .

An experiment is conducted and the random variable X is observed.

X is assumed to take values in I and is distributed by P0 , where e is

an element of e whose value is unknown to the statistician.
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We can now outline the steps in a statistical problem. The statistician

observes the event X = x, x E 1; then given the family of measures P 0

but not the value of 6, he selects a E A and is assessed the penalty

L(O, a) . Thus, the objective is to choose a so that L(O, a) is "kept small";

ideally, if there exists a0 such that L(e, a) = min L(6, a), then one should

choose a0 However, it is obvious that in order to be able to choose a0

in general, one would need to know which parameter 6 e 8 prevailed. Since

X is distributed by P0 , the event X = x contains information about 0, hence

the choIce of a e a should generally depend on the outcome of the experiment.

Thus, given the outcome of the experiment, a mapping 6: 1-* A is chosen.

Since X iq a random variable, o(X) is a random variable, provided that 6

is a measurable mapping. We denote the set of such measurable mappings

by & .

In repetitions of the experiment, X will change; hence, unless

6(X) is almost surely constdnt, L(9, 6(X)) will varv. Thus, the average loss,

Ee L(6, 6(X)) is used as a criterion for choosing 6 rather than the loss in

any given experiment. We call E0 L(O, &(X)) the risk function (of 6) and

denote it by R6 (0) = R(9, 6). Note that our assumptions (6 measurable and

L(9, a) uniformily bounded from below) insure that R 6(0) "exists" for each

0; it may however, be +o.

It is desirable to augn'wint & by introducing the "mixed" or "random-

ized" decision procedures 0, whose elements will be denoted by p' . To

do this, we introduce a wr-algebra %, and let 0 be the set of all probability
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distributions on 1. Of necessity It must include each r6}, 6 E ,

so that SC 4, by using distributions such that P{6} = 1 . We will refer

to the elements of 9 as decision rules or decision procedures; when it is

necessary to specifically identify an element of 0 as being in &, we will

refer to it as a pure decision rule.

Clearly, if R(O, 6) is 9 measurable for each 0,

R (0) = R(0, =) f R(O, 6)d(p(6)

is well-defined. We call R (6), as defined above, the risk function of 9,

Then, the problem of selecting a decision procedure becomes the problem of

selecting p E 4 so that R(0, (p) is kept "small".

Let S = {R ((), op F 4} and let T be the mapping defined by

T: 0-- S, that is T(9,) = R (0) . We refer to S as the risk set.

If for (l, V 2  c ', we have R(6, 01 ) = R(P, q2) for all 0e e, then (,

and 9. are said to be equivalent. Thus, the elements of S are equivalence

classes of elements of 0 . Consequently, we can replace the problem of

selecting p 4E '0 with the equivalent problem of selecting an element s f S.

Then we can choose any element of T- (s) as the decision procedure to be

employed.

In order to simplify notation, we will adopt the following conventions

In the material that follows. For s,, s 2 C S, sI < s2 means T_ I =

R(0, Vi) < R(OZ9, CZ) = T- (S9) for all 6 0 e and for some 0 o IE

R(O0 , "I) < R(00 , P z); here (p is any element of T 1(s and is any
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element of T-l(s Similarly, s, < s2 means R(O, q1) < R(O, 2) for all

In particular, we will say that sI c S is inadmissible (and all
T-1

SE T(S) are inadmissible) if there is an so0  S with so < s1 I If there

T-l
is no such So, then sl, equivalently any p e (S 1 will be said to be

admissible.

Clearly, if s1 < s., then s should not be employed by the statistician.

Further, if there is an s 0 such that so< s, for all s E S; then so is to

be chosen and there is no problem of selection. This is, unfortunately, an

exceptional situation. In most problems, an ordering of this type is not

available among the decision rules being considered; it is quite customary to

find oneself with the problem of selecting one of a large set of mutually in-

comparable rules.

Note that S is of necessity a convex set. To see this, observe that

4D is a convex set. Then let (0 = XPI+ (I- X)V2, V1, (P? F XE [0,1] .

Then

R 9(0) =f R(O, 6) d[(Xq 1 + (-X )(6)
'0

= f R(O, 6)[Xdq 1(6) + Xdq, 2(6)]

=XR (9) + (l-X) R (0)

Since T is a linear mapping, we have that if

s 0 = T(9) ,

#1160 -5



then

so = s +÷(l-X) s2 ,

where
sI = T(9 1), s 2 =

However, as S has been defined, it is not necessarily the convex hull of

T(b), denoted by co(T(b)) To see this, let & = {-o < 6 < o},

e= {-oo<O<oo) and

0 e < 6R 6 ( e ) = 0 >6>_6

That is, T(.) is the set of all degenerate cumulative distribution functions.

It is easily seen that co(T(b)) is the set of all cumulative distribution

functions with a finite number of jumps. However, S is the set of all cumu-

lative distribution functions on (.oo, 0)

In the discussion that follows, the "classical" decision criteria

known as the minimax criterion, minimax regret criterion, and Laplace's

criterion will be used repeatedly as illustrations. For the sake of complete-

ness, they are defined below. Each of these corresponds to a different in-

terpretation of what might be meant by "keeping R (6) small".
(P

(1). The minimax criterion. Choose E0 e 4 so that sup R (0) <

sup R (6) for all (pe 0
(p

(2). The minimax regret criterion. Choose p0 e 0 so that
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sup[R (0)- inf R Y(e)]_ sup[R (OJ -inf R (0)]
0v[ 0(u YC€ 45 0€ € 0

for all rpE c

(3). Laplace's criterion. Choose E0 4 0 so that

f R9 (0) dRe) < f R1P(0) dL(e)
80 6

for all 47 c 0, where ý, is the uniform measure on E . (If 8 is a compact

subset of En, for example, f R 9()dý&(e) is well-defined. In more general
8

situations, some modifications to this definition may be required).

In each of the three cases above so, the "optimal" element of s ,

is defined by so = T(p0)
Each of these reflects a different interpretation of "keeping R (0)9,

small", in ignorance of the value of 0 . The minimax criterion guarantees

that the largest value of R (9) is as small as possible. The minimax regret

criterion identifies inf R (0), the lower envelope function, as the smallest

loss that you could incur if you knew 9; hence R (0) - inf RY () is the

additional loss that is incurred by one's ignorance of 0 . Then you seek to

make the maximum of this difference as small as possible. In Laplace's

criterion, the philosophy is one of keeping the "average loss" small rather

than the maximum - as is the case with minimax and minimax regret.

Average is here identified with the uniform measure on e .

Historically, there have been two approaches employed in studying the

question of what might be meant by a "best" s E S . They are

#1160 -7-



(1) Specify a criterion, then deduce its properties and see if they

are satisfactory.

(2) List the properties that you would like a decision procedure to

possess, then determine the existence and construction of

decision rules meeting the required conditions.

In what follows, the third and fourth sections will follow the first approach

and the fifth section will use the last approach.

For additional material on the above definitions and concepts, the

reader is referred to standard treatises on decision theory, such as D. Blackwell

and M. A. Girshick (2 ], T. S. Ferguson [11 ], and A. Wald [301.

3. Approximation theory and statistical decision theory

Let £ be a normed linear space of real-valued functions of 0, 0 c 8

for x e £, we denote the norm of x by l(x11 1 When there is no danger

of confusion concern-ing the space under consideration, the subscript £

will be deleted. Let S be a convex set in £ and let v be a distinguished

point in £.

We say that s 0e S is a best approximation to v if 1so -A < 11ls-vil

for all s c S Z The existence and determination of s is a well-known

problem in approximation theory and there is a considerable literature about

this topic. A few of the more significant of these results are summarized

below. If we add the additional assumption that v < s for all s f S£ P

then, we will show that the notion of a best approximation to v is a possible

interpretation of the concept of optimality in statistical decision theory.
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Consequently, the theorems of this part of approximation theory frequently

havw. a natural reinterpretation in a statistical context.

For general discussions of properties of convex sets in normed linear

spaces, the reader is referred to F. A. Valentine [29] and N. Dunford and

J. T. Schwartz, Chapter V, [ 9 ]. The theory of best approximations by

elements of convex sets is discussed in the book by I. Singer [26], (in

particular see Appendix I) and in papers by F. R. Deutsch and P. H. Maserick

[8 ], A. L. Garkavi D2,13], V. N. Burov (3,4], and G. S. Rubinstein [23], to

name a few.

We denote a hyperplane H in £ as a set of the form

H = {xX : L(x) = c)

where L c £ , the adjoint space of £, L * 0, and c is a real scalar.

Then, the best approximation in S£ to v can be characterized by

the following theorems, which will be stated here without proofs.

Theorem 3.1 (I. Singer [26], F. R. Deutsch and P. H. Maserick[8 ]). Let

Sbe a convex set in £, a normed linear space, and let v E i, the
S£

complement of S • Then, there exists an s 0 E S which is a best ap-

proximation to v if and only if there exists a linear functional L e £ with

(1) Il = ,

(2) L(s 0 ) = inf L(s)
se S 1

(3) L(s 0 -v) = 11s 0 -vIA

#1160 -9-



Geometrically, this says that a point so in S is a best approximation
c£

to v e S C if and only if there is a hyperplane H separating v from St

which supports S at so, and whose distance from v is the distance from

v to s0 *

Secondly, we have the following characterization of a best approxima-

tion.

Theorem 3. 2 (A. L. Garkavi [13 ]). Let SI be a convex set in the normed

linear space £. Then sO f S is the best approximation to v e S£ if and

only if for each s e S£ there is a linear functional Ls in £ such that

(1) L5 is an extreme point of the closed unit ball in £

(2) Ls(S-So)>O ,

(3) L -(s-V) = )s - A

We now turn to the connection between the best approximation problem

described above and optimality in statistical decision theory.

Let S be the risk set of a statistical decision problem and let £ be

a normed linear space. Let S = S fl£ = {s eS, I1sO i<oo } . We say that

sc CS is (v,9 ) optimal if for v<s, for all sc SS£, s is the best

approximation to v from S£ . If S is empty, then we define every s e S

as (v, f) optimal.

It remains to be shown that this is in fact a reasonable definition of

optimality for statistical decision problems. We will try to Justify this

in two steps. First, we will show that minimax, minimax regret, and
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Laplace's criterion are (v, £) optimal procedures for particular choices of

v and £ . Second, having established that this is in fact a generalization

of these "classical" decision criteria, we will give an intuitive interpreta-

tion of the notion of (v, £ ) optimality as a family of decision criteria. We

will make the simplifying assumption that e is compact. Modifications to

some definitions will be needed, when this is not the case, and can easily

be made. However, these will be omitted here, since they do not serve

the immediate purpose of this exposition.

Let v= v(O) = -M, 0 e . Then, if we take £ to be the space of

bounded functions f(O), 0 e e with I1 f sup I f(0) Then, the best

approximation to v from S, that is, the (v, J4 optimal decision rule for

this case is the minimax decision procedure. Note that our hypotheses

insure v<s forall seS S

Now employ the same choice of v and let £ be the space of R -

integrable functions of 6, where 1. is the uniform measure on e. Here

the (v, £) optimal aecision rule is Laplace's criterion.

To obtain the identification of minimax regret as a (v, £) optimal de-

cision procedure, we define v = v(O) = inf R (0), the lower envelope

function. Clearly v < s, for all s E S . Then the same choice of £ as in

the representation of the minimax criterion provides the representation of the

minimax regr-t criterion.

Hence, it is evident that this notion ot optimality is a generalization

of some of the familiar notions of optimality.

#1160 -II -



We now give an intuitive interpretation of (v, £) optimality as a

statistical optimality criterion. The statistician should interpret v as the

"ideal" decision rule, that is, what he would like to be able to accomplish,

such as in the case of "perfect information". The distance from v to S

reflects his inability to accomplish this ideal as a consequence of uncertainty.

Since v in general is not attainable, the suggestion is to choose that element

of S which comes as close as possible to the ideal v, hence, "a best

approximation to v".

To clarify these ideas, consider the following simple example. We

consider a decision theoretic model for the problem of testing a simple hypothesis

against a simple alternative. Thus e = (6l, 62) and C = (al, a 2 )

Let

a 1 02

Then the risk set is the set (a , • ), corresponding to the probabilities of

errors of the first and second kind using the decision rule 9, 0 . A typical

risk set for such a problem is shown below.

-12 - #1160



S

v=O

Here it appears natural to set v = (0, 0), which corresponds to a

"perfect" test, that is, one with size zero and power unity. The different

choices of £ correspond to different ways of defining the point in S which

is closest to (0, 0) .

We now return to Theorems 3.1 and 3. 2 to reexamine them in the light of

statistical decision theory, rather than approximation theory TIrt note that

the only significant distinction in the conversion to the statistical problem is

the additional assumption v < s . This readily leads to the following, which

we state as Theorem 3. 3.

Theorem 3. 3. Let 9 be a convex set in 1, a normed linear space and

let v<_s, for all sa ES . Then, s0 is a be,-t approximation to v if and

only if there exists a positive linear functional L * £ satisfying conditions

#1160 -13-



(1), (2) and (3) of Theorem 3.1. Similarly, so is a best approximation to v

if and only if for each s f S, there is a positive linear functional Ls in

£ satisfying conditions (1), (2) and (3) of Theorem 3. 2.

Some of the more immediate consequences, for example, include the

following w'ell-known result in statistical decision theory. If all the risk

functions in S are continuous and S£ # *, then the space £ determined by

the sup norm coincides with £Z0 space, say if e C En . The adjoint space

is £I space and the positive linear functionals of norm unity are then the

probability distributions on e, using the usual Borel a--algebra on - . Then

the linear functional L of Theorem 3.1 is the least favorable distribution (for

either minimax or minimax regret, depending on the choice of v from the two

alternatives specified earlier). In a less restrictive context, the linear func-

tional L of Theorem 3.1, gives a prior distribution against which sO is

Bayes, provided one adds a few minor regularity conditions. Statistical in-

terpretations of Theorem 3. 2 are not as useful, although these can be inferred

as well.

4. Opimization in statistizal decision theory defined by minimizing functionals

In this section we introduce another method of defining optimization in

statistical decision problems.

Let $ be a class of extended real valued functionals h on a linear

topological space M of real valued functions of 0, 0 4E , with the following

properties:
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(1) h(O) 0, lh(-M$)< oo, where -M denotes the function

f(O) M, 0 e

(2) If x< y, h(x) <h(y)

Then we say that so e S CM is h-optimal if h(s ) <h(s) for all sc SS
0 0-

If h(s) = + co for all s e S, then every s c S is said to be h-optimal.

Since every norm is a functional, h-optimality reduces to (v, -C)

optimality in some particular instances. That is, if h(s) = s - viil£, when

us - v1 T, < ao and h(s) = w, otherwise, then this is precisely (v, C) optimality.

However, there are many instances of h-optimality which are not expressible

in terms of norms, and hence, this is in fact a generalization of (v, £) op-

timality.

It is instructive to examine the principle of Bayesian inference in the

light of the definition of h-optimality. Let g be a probability measure

(equivalently any measure gL with ýt(e) < 0o ) on the Borel sets of 8 . Then

so is the Bayes decision rule with respect to ýt if

(4.1) f R 0(O)dj(O) :f R (O)dj(0)
6 0 6

for all 4 e i and so = T(,p 0 ) . Note that we need the additional assumption

that R (0) is measurable with respect to the Borel or-algebra on e for every

Observe that (4. 1) Is a statement of minimization with respect to a linear

functional. Since, as a consequence of the Riesz representation theorem,

#1160 -15-



every positive linear functional has a representation of the form employed in

(4. 1) for compact e, Bayesian inference coincides in this case with h-optim-

ality for linear h

This observation provides an obvious explanation for the assertion that

the solution to a Bayesian problem is obtained more easily than the solution

using other criteria. Namely, in the sense employed here, Bayesian problems,

are linear problems, that is, minimization with respect to linear functionals.

Other optimization principles are generally non-linear in this sense.

We can relate this principle to a growing body of mathematical literature

as well by noting that this is precisely the structure of mathematical pro-

gramming problems. The function h becomes the objective function of the

mathematical programmer and the convex set S is the set of feasible points.

Hence Bayesian inference is linear programming from this point of view.

However, the set of constraints required to generate S need not necessarily

be finite. The general optimization problem is, in general, a problem of

non-linear programming in an arbitrary linear space.

Some useful work in this area which can be exploited by statisticians

are J. W. Daniel [6 , 7 J, K. Kirch~assner and K. Ritter [15 1, K. Ritter [221,

and L. W. Neustadt [19 ]. In particular, it should be noted that some re-

lationships between mathematical programming and the areas of statistics and

probability are quite we!l-known. An extensive discussion of these and a

substantial bibliography may be found in the survey paper by 0. Krafft [ 16 1.
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5. Axiomatizations of optimality in statistical decision theory. Another method

of defining optimality in statistical decision problems is to list properties that

you would like such a procedure to possess. I will briefly summarize the

history of this topic and conclude with the statement of some recent results

by E. E. Nordbrock and some of their consequences.

In H. Chernoff [ 5 ], a set of eight postulates is exhibited for a finite

decision problem (e, 9 both finite). For these postulates, Laplace's criterion

is the only rule which satisfies all eight. Chernoff notes that if an additional

postulate were added to the list; a postulate of the "nature duplication" type

to be discussed below, then a contradiction would result. Chernoff's results

"Justifying" Laplace's criterion were extended to more general decision problems

by H. Uzawa [27,28 ].

In J. Milnor [18 ], a list of ten postulates for a finite decision problem are given.

Subsets of these which characterize Laplace's criterion, minimax, and minimax

regret are exhibited. It should be noted that minimax regret was proposed by

L. J. Savage in (24,25 ], and is referred to as Savage's criterion by Milnor.

Milnor also exhibited a set of eight postulates which are consistent and gave a

construction of a rule which satisfies these postulates. His rule is a precursor

of the rule used by Atkinson, Church, and Harrisfl], which will be discussed in

greater detail later. Good (14 ], proposed a restricted type of minimax rule.

The thirteenth chapter of R. D. Luce and H. Raiffa [17 ] and the paper of

R. Radner and J. Marschak 21 ] provide expository treatments of decision

principles.

#1160 -17-



In Atkinson, Church, and Harris, the following set of postulates were

proposed for the finite decision problem e = {l ... , 0 1n} and JD= {dl, d2,

. .. , d I; here S is a convex polyhedron in E and is the convex hull ofm n

the row vectors of the matrix A = {a }, where a ij = L(di 0 j)

1. The optimal class Q(A) Is non-empty.

2. Let nI and ir be permutations acting on e and & respectively.

Then if A' = {a' ) = {a 1i .lw)1M, Q(A') is the set of points of S obtained by

applying i2 to the coor inatis of points in Q(A)

3. Every element of Q(A) is admissible.

4. Q(A) is a convex subset of S

-cI cz •. c n

cI1 c 2 . c n

5. If A= XA0+ , X >0,

Lc I cz .. c

then Q(Al) = {Xx + c, x e Q(A)} where c = (cc, .. C

T TT
6. Let co(A1 ) = co(Aý, where A is the transpose of A and co(A)

is the convex hull of the row vectors of A. If A, is obtained from A. by

deleting j columns from A2 , then O) is obtained from Q(A2) by deleting

the corresponding j coordinates from each element of Q(A2 )

Remark: This type of postulate is usually called a "nature duplication"

postulate.

7. If for two statistical decision problems, A, and A2, with risk sets

S and S2 , the points of S1 which are both extreme points and admissible
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coincide with the points of S which are both extreme points and admissible,

2

then Q(A1 ) = Q(A2 )

8. If {A converges to A0 and x c Q(An) for every n, thennn=l n n

every limit point of {x } is in Q(A0 ) . (Here convergence of {An} isn n=ln

element by element).

In [ 1 ], it was exhibited that these postulates are consistent for finite

decision problems and a decision rule called "iterated minimax regret" (IMR)

was shown to satisfy all eight postulates. IMR is closely related to the rule

given by Milnor [18] and is described below.

The iterated minimax regret principle (IMR) selects any element sO 0 S

as optimal which is obtained by the following process.

Let v1 = Vl (9) = inf R (0) and let £ be the normed linear space with,

for s = T(,p), Jlsil = 11R (()IJ = supR (() . Let z =inf Uis -rv i andlet {en }= be a
0 fe 1sn Sn

sequence of positive numbers with lirn en = 0 . Let Q = S and inductively,
n - ao

for n_>1, define Qn+l = {se Qn: Us-vn _< zn + en z1 where v n=inf R,(O)

4c T' (Sn)

and zn=Sinf .1S-Vn • If z-= o, then all s eS are said to be optimal.
se S 00

If zI <00, denfine Q = n- Q and choose as s any element of Q
n=l n

B. Efron [10] extended these results in part to Infinite decision problems.

Here some modifications in the postulates must be made and these are listed

below in the form given by E. E. Nordbrock [20].

2. If h: e - e' is a homeomorphism and if S' = {R' (0'); 0' E 8'; R' =

R°hI, then Q'=Qoh
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5'. If S' = XS + c, where c = c(6) is a continuous function of 0

then Q'=XQ+c

6'. Let S'= {R (e-)} and S= {R (0) = RIB}, where Rie means the

restriction of the domain of R to E and eC e' . Then if for every 00 E G'

there is a probability measure •e0 on E such that for all p E t, we have

R(o0 ) = f R1(0)d1 ±0 (0), then Q' le = Q
6 0

7' If S End S' have a common complete class, then Q = Q,

8' Define d(S, S') = max{ sup inf lir- sil, sup inf Or- s 11
sE S rE S' re SE se S

Then if d(Sn, S)- 0 as n- oo and if s(n) E Qn for all n, and if

d(s (n), s)-0, then sE Q.

Efron showed that these postulates (1, 2', 3, 4, 5', 6', 7', 8') are satisfied

by IMR for S a closed bounded convex set in E . He also claimed thatn

with the exception of postulate 1 and the weakening of the conclusion of

postulate 8 to s c Q, this holds for closed bounded convex sets in L

However, the following counter example shows that inadmissible decision

procedures may result.

Example 5.1 Nordbrock [20]. Let E = (1, 2, ... I and let &= {0, 1, 2, ... }

For 6=1,2, ... , let

R61(0)1 = i •6 e

and let

R0 (0)=1 forall 0E 8
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Let S be the closed convex hull of {R 6 (0)) . Then it is easily seen that
0o
' Qn = Q1 = S and so = R0 (0) is inadmissible.

n=l

We now conclude with a statement of Nordbrock's results.

S is said to be weak intrinsically compact (Wald[30]), if for every

sequence {sn 1 I S, there is a subsequence {s n} and an s' e S such that

lim inf R n(0) > R'(0) for all 0, where s = R (6) and s' = R'(0)

Theorem 5.1. IMR satisfies properties 2', 4, 5', 6' generally. Property I

holds if S is weak intrinsically compact. Property 8' holds if S is closed

and properties 3 and 7 hold if S is compact.

6. Summary. In this exposition, I have attempted to give some illustrations

of the possible directions in which the mathematical foundations of statistical

decision theory might be developed. The limitations of this volume preclude

the extensive development of these ideas which are necessary in order to de-

termine its possible impact on the subject of theoretical statistics. However,

it is hoped that this brief exposition will encourage research workers to further

examine the implications of the ideas contained herein. At this stage it is not

yet apparent whether the material of sections three and four will in fact produce

new basic results in statistics as such. To date, it is possible to identify

many familiar statistical results in the writings of functional analysts and

further display the correspondence between these two areas. The notion of

iterated minimax regret developed in the fifth section is handicapped by its

apparent incomputability, except in rather artificial examples. The principle

has not been successfully applied to any concrete statistical problem as yet.
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The author is indebted to Professor Herman Chernoff for some discussions

concerning his paper [51 and for calling the two papers by H. Uzawa [Z7, 28]

to his attention.
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